3,259 research outputs found

    A stoichiometric terbium-europium dyad molecular thermometer: energy transfer properties

    Full text link
    © 2018, The Author(s). The optical thermometer has shown great promise for use in the fields of aeronautical engineering, environmental monitoring and medical diagnosis. Self-referencing lanthanide thermo-probes distinguish themselves because of their accuracy, calibration, photostability, and temporal dimension of signal. However, the use of conventional lanthanide-doped materials is limited by their poor reproducibility, random distance between energy transfer pairs and interference by energy migration, thereby restricting their utility. Herein, a strategy for synthesizing hetero-dinuclear complexes that comprise chemically similar lanthanides is introduced in which a pair of thermosensitive dinuclear complexes, cycTb-phEu and cycEu-phTb, were synthesized. Their structures were geometrically optimized with an internuclear distance of approximately 10.6Å. The sensitive linear temperature-dependent luminescent intensity ratios of europium and terbium emission over a wide temperature range (50–298K and 10–200K, respectively) and their temporal dimension responses indicate that both dinuclear complexes can act as excellent self-referencing thermometers. The energy transfer from Tb3+ to Eu3+ is thermally activated, with the most important pathway involving the 7F1 Eu3+J-multiplet at room temperature. The energy transfer from the antenna to Eu3+ was simulated, and it was found that the most important ligand contributions to the rate come from transfers to the Eu3+ upper states rather than direct ligand–metal transfer to 5D1 or 5D0. As the first molecular-based thermometer with clear validation of the metal ratio and a fixed distance between the metal pairs, these dinuclear complexes can be used as new materials for temperature sensing and can provide a new platform for understanding the energy transfer between lanthanide ions

    Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene

    Get PDF
    Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis. © 2009 SGM.published_or_final_versio

    Roles of a novel splice variant of human IFI16 in innate immune response

    Get PDF
    Poster Presentation - Theme 4: Infection & immunityDNA from viral or bacterial pathogens activates innate immune response. The recognition of self-DNA would induce autoimmune diseases such as systemic lupus erythematosus (SLE). In human, AIM2 like receptors (ALRs) including AIM2, IFI16, IFIX and MNDA are DNA binding proteins implicated in DNA sensing. Most ALRs contain an N-terminal pyrin domain and C-terminal HIN200 domains. However, mouse SLE susceptibility locus p202 encodes only HIN200 domains. A human homolog of p202 was not found. Here, we identified and characterized a novel splice variant of human IFI16, which has a similar domain structure as mouse p202. We named it ...postprin

    Changes of Water/Ice Morphological, Thermodynamic, and Mechanical Parameters During the Freezing Process

    Get PDF
    To reduce ice adhesion hazards, optimize or develop the anti/de-icing methods, it is necessary to understand the change of freezing parameters during the freezing process, such as thermodynamic, morphological, and mechanical parameters. The present study investigates the freezing characteristics by purpose-built devices to describe the freezing process quantitatively. Morphological parameters were calculated the reverse engineering. The results showed that the inner temperature and morphology of water droplet were obviously changed, and the freezing process could be mainly divided into three stages: initial and spreading, freezing, and steady-state. Moreover, an experimental apparatus that measured the phase swelling force was built on investigating the freezing process of water from the mechanical aspect. It was found that the swelling force generated from the freezing process of 2473 mm3 water could reach 46.38 N. The generation process of swelling force could also be separated into three stages: non-expansive stage, increasing stage, and stable stage. The formation stage of swelling force was similar to that of ice. Combining the measured expansion force with the calculated freezing parameters based on the observed test, the freezing process of water could be better understood. The study would help researchers and engineers understand the freezing process and provide some freezing characteristics parameters for the anti/de-icing research

    Morphine modulation of pain processing in medial and lateral pain pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the wide-spread use of morphine and related opioid agonists in clinic and their powerful analgesic effects, our understanding of the neural mechanisms underlying opioid analgesia at supraspinal levels is quite limited. The present study was designed to investigate the modulative effect of morphine on nociceptive processing in the medial and lateral pain pathways using a multiple single-unit recording technique. Pain evoked neuronal activities were simultaneously recorded from the primary somatosensory cortex (SI), ventral posterolateral thalamus (VPL), anterior cingulate cortex (ACC), and medial dorsal thalamus (MD) with eight-wire microelectrode arrays in awake rats.</p> <p>Results</p> <p>The results showed that the noxious heat evoked responses of single neurons in all of the four areas were depressed after systemic injection of 5 mg/kg morphine. The depressive effects of morphine included (i) decreasing the neuronal response magnitude; (ii) reducing the fraction of responding neurons, and (iii) shortening the response duration. In addition, the capability of cortical and thalamic neural ensembles to discriminate noxious from innocuous stimuli was decreased by morphine within both pain pathways. Meanwhile, morphine suppressed the pain-evoked changes in the information flow from medial to lateral pathway and from cortex to thalamus. These effects were completely blocked by pre-treatment with the opiate receptor antagonist naloxone.</p> <p>Conclusion</p> <p>These results suggest that morphine exerts analgesic effects through suppressing both sensory and affective dimensions of pain.</p

    Challenges in biogas production from anaerobic membrane bioreactors

    Full text link
    © 2016 Spectacular applications of anaerobic membrane bioreactors (AnMBRs) are emerging due to the membrane enhanced biogas production in the form of renewable bioresources. They produce similar energy derived from the world's depleting natural fossil energy sources while minimizing greenhouse gas (GHG) emissions. During the last decade, many types of AnMBRs have been developed and applied so as to make biogas technology practical and economically viable. Referring to both conventional and advanced configurations, this review presents a comprehensive summary of AnMBRs for biogas production in recent years. The potential of biogas production from AnMBRs cannot be fully exploited, since certain constraints still remain and these cause low methane yield. This paper addresses a detailed assessment on the potential challenges that AnMBRs are encountering, with a major focus on many inhibitory substances and operational dilemmas. The aim is to provide a solid platform for advances in novel AnMBRs applications for optimized biogas production

    Loss of APD1 in Yeast Confers Hydroxyurea Sensitivity Suppressed by Yap1p Transcription Factor

    Get PDF
    Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU.published_or_final_versio

    Resonances in J/ψ→ϕπ+π−J/\psi \to \phi \pi ^+\pi ^- and ϕK+K−\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψ→ϕπ+π−J/\psi \to \phi \pi ^+\pi ^- and ϕK+K−\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=1790−30+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=270−30+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2â€Č(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.
    • 

    corecore